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Abstract. We evaluate the threshold matrix–element for the reaction pp → ppπ0 in a fully relativistic
Feynman diagrammatic approach. We employ a simple effective range approximation to take care of the
S–wave pp final–state interaction. The experimental value for the threshold amplitude A = (2.7 − i 0.3)
fm4 can be reproduced by contributions from tree level chiral (long–range) pion exchange and short–range
effects related to vector meson exchanges, with ω-exchange giving the largest individual contribution.
Pion loop effects appear to be small. We stress that the commonly used heavy baryon formalism is not
applicable in the NN–system above the pion production threshold due to the large external momentum,
|p | '

√
Mmπ, with M and mπ the nucleon and the pion mass, respectively. We furthermore investigate

the reaction pp → pnπ+ near threshold within the same approach. We extract from the data the triplet
threshold amplitude as B = (2.8 − i 1.5) fm4. Its real part can be well understood from (relativistic) tree
level meson–exchange diagrams. In addition, we investigate the process pp→ ppη near threshold. We use
a simple factorization ansatz for the ppη final–state interaction and extract from the data the modulus of
the threshold amplitude, |C| = 1.32 fm4. With gηN = 5.3, this value can be reproduced by (relativistic) tree
level meson–exchange diagrams and η–rescattering, whose strength is fixed by the ηN scattering length.
We also comment on the recent near threshold data for η′–production.

PACS. 13.60.Le Meson production – 25.40.Ep Inelastic proton scattering

1 Introduction and summary

With the advent of proton cooler synchrotrons at Bloom-
ington, Jülich and Uppsala, high precision data for the
processes pp → ppπ0, pp → dπ+, pp → pnπ+ and
pp → ppη in the threshold region [1–5] have become
available. The first data on neutral pion production were
a big surprise because the experimental cross sections
turned out to be a factor of five larger than the theoreti-
cal predictions based on direct pion production and neu-
tral pion rescattering fixed from on-shell πN data. Never-
theless, the energy–dependence of the total cross section
σtot from threshold to excess energies of about 50 MeV
is completely given by the strong S–wave pp final–state
interaction, see e.g. [6]. Subsequently, it was argued that
heavy–meson exchanges might be able to remove this dis-
crepancy [7,8]. On the other hand it was shown [9,10]
that the (model–dependent) off–shell behavior of the full
πN T–matrix also can enhance the cross section consid-
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erably. Another avenue to eventually understand the near
threshold cross section is offered by calculations within
the framework of tree–level heavy baryon chiral pertur-
bation theory (HBChPT) including dimension two opera-
tors [11–14]. In these papers, HBChPT has been used to
constrain the long–range π0-exchange contributions. How-
ever, it was found that the calculations for pp → ppπ0

performed so far lead to a marked difference in the role
of the so–called π0 rescattering contribution, which in-
terferes constructively with the direct production in the
Jülich model and destructively in the HBChPT frame-
work, respectively. In a recent paper, it was argued that
the treatment underlying the isoscalar pion–nucleon scat-
tering amplitude and the related transition operator for
the process NN → NNπ (where N denotes the nucleon)
in the HBChPT framework is not yet sufficiently accurate
and thus the resulting rescattering contribution should be
considered as an artifact of this approximation [15]. It
was also stressed that the process pp→ dπ+ is more sen-
sitive to the long–range (chiral) pion exchange. One–loop
graphs have been considered in [16].
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However, one important feature of this reaction should
be kept in mind, namely the large momentum mismatch
between the initial and the final nucleon–nucleon state:
the initial center–of–mass momentum is given by |p |2 =
Mmπ + m2

π/4, with mπ (M) the neutral pion (proton)
mass, whereas close to threshold the final one is compat-
ible with zero. This large difference leads to momentum
transfers equal to |p | and higher. In particular, both the
squared invariant momentum transfer and the kinetic en-
ergy of the incoming protons are −Mmπ and mπ/2, re-
spectively, and therefore the chiral counting in the original
sense does not apply, see e.g. [12]. We will actually demon-
strate here that non-relativistic approximations (i.e. the
heavy baryon formalism or HBChPT) are not applica-
ble in the two-nucleon system above the pion production
threshold. The simple reason for that is the extreme kine-
matics with the external momentum |p | '

√
Mmπ di-

verging in the heavy nucleon limit M →∞ (while this ar-
gument could be considered formal, it nicely pinpoints the
problems of the heavy baryon approach). The HBChPT
framework (which is very successful for low–energy single
nucleon processes) looses its systematic order–by–order
low-energy expansion when external momenta grow with
the nucleon mass (|p | ∼

√
M). In order to avoid such

problems (which are simply related to kinematics) it seems
mandatory to perform fully relativistic calculations. In
particular, we find that one of the low–energy constants
c2 entering the chiral π0–rescattering is enhanced in the
relativistic calculation by a factor of two as compared to
the non-relativistic HBChPT approach. In this spirit we
perform here a fully relativistic calculation of various tree
and one-loop diagrams contributing to pp → ppπ0 and
pp → pnπ+ at threshold. Our approach can also be ex-
tended in a straightforward manner to η and η′ produc-
tion in pp–collisions. We thus discuss here also the reac-
tion pp → ppη up to laboratory excess energies of about
100 MeV using a simple factorized form to account for the
final–state interactions in the ppη three–body system.

The pertinent results of this investigation can be sum-
marized as follows:

(i) Assuming that the pp final–state interaction is an
on–shell NN–process and using a simple effective
range parametrization for the 1S0 pp phase shift,
we can accurately fit the 40 data points of the to-
tal cross section from threshold up to Tlab = 326
MeV with a constant (threshold) amplitude equal to
A = (2.7− i 0.3) fm4.

(ii) The real part of this number can be well understood
in terms of chiral π0 exchange (including chiral π0

rescattering) and heavy meson (ω, ρ0, η) exchanges
based on a relativistic Feynman diagram calculation.

(iii) We have evaluated some classes of one-loop graphs
and find that they lead to small corrections of the
order of a few percent. Therefore chiral loops do not
seem to play any significant role in the processes
NN → NNπ, which are dominated by one–pion ex-
change and short–range physics (with the notable ex-
ception of pp→ dπ+, where d denotes the deuteron).

(iv) Both the long range π0 exchange and the short range
vector meson exchange lead to contributions to the
threshold amplitude A which do not vanish in the
chiral limit mπ → 0. There is no chiral suppression
of the reaction pp → ppπ0 compared to other NNπ
channels. In all cases the respective threshold am-
plitudes are non-zero (and finite) in the chiral limit.
This is in contrast to the widespread believe that
pp → ppπ0 is suppressed for reasons of chiral sym-
metry.

(v) Within the same approach, we have investigated the
threshold behavior of the process pp → pnπ+. It is
given in terms of A and the triplet threshold ampli-
tude B with the empirical value B = (2.8−i 1.5) fm4.
The corresponding real part ReB is well reproduced
by chiral one–pion exchange and short–range vector
meson physics. The empirical value of B has however
a sizeable imaginary part, which naturally can not be
explained by tree graphs. This channel deserves some
further study. The small and large imaginary parts
of A and B, respectively, are related to the weak and
strong initial state interaction in the 3P0 and 3P1

entrance channel, respectively.
(vi) Finally, we have investigated the process pp → ppη

near threshold. We treat the final state–interaction
in the pp and ηp subsystems using a factorization
ansatz and effective range approximations. The em-
pirical value of the modulus of the threshold am-
plitude, |C| = 1.32 fm4, is reproduced with gηN =
5.3 by tree level meson exchange graphs and η–
rescattering. The strength of the latter is fixed from
the (real part of the) ηN scattering length.

Altogether, it is quite surprising that the total cross
sections for pion and eta production in pp–collisions near
threshold can be explained so simply in terms of final–
state interaction (using effective range approximations)
and certain well-known (relativistic) meson–exchange di-
agrams for the respective threshold amplitudes. However,
such an approach requires further improvements and tests.
First, one should include systematically initial–state and
final–state NN–interactions. Secondly, in order to per-
form a detailed test of the underlying meson production
mechanism one has to consider more exclusive observables
like angular distributions of differential cross sections and
asymmetries generated by polarized proton beams and
targets. We hope to report on these topics in the near
future.

2 Threshold kinematics and final–state
interaction

2.1 Kinematics

We consider the reaction p1(p ) + p2(−p )→ p+ p+ π0 in
the center–of–mass (cm) frame at threshold (see Fig. 1).
The invariant T–matrix can be expressed in terms of one
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Fig. 1. The process pp→ ppπ0 in the center–of–mass system

complex–valued (constant) amplitude, which we denote by
A, as

Tcm
th (pp→ ppπ0) = A (iσ1 − iσ2 + σ1 × σ2) · p . (1)

The σ1,2 are the spin–matrices of the two protons. The
value of the proton cm momentum to produce a neutral
pion at rest is given by

|p | =
√
mπ(M +mπ/4) = 362.2 MeV , (2)

with M = 938.27 MeV the proton and mπ = 134.97 MeV
the neutral pion mass, respectively. Obviously, |p | van-
ishes in the chiral limit of zero pion mass. Therefore the
soft–pion theorem which requires a vanishing threshold T–
matrix in the chiral limit mπ = 0 is trivially fulfilled (as
long as A does not become singular) [17]. We remark that
similar features occur for the reaction πN → ππN (see
[18]). All dynamical information is encoded in the thresh-
old amplitude A of dimension [length4]. In the threshold
region, the wave function of the final di–proton system as
well as that of the neutral pion are dominated by angular
momentum zero states, thus we are dealing with a 3P0 →
1S0s transition. Consequently, one deduces from unitarity

A = |A| eiδ(3P0) , (3)

with the 3P0 pp phase shift to be taken at the thresh-
old energy in the lab frame, T th

lab = mπ(2 + mπ/2M) =
279.65 MeV, where δ(3P0) = −6.3◦ (FA95 solution of
VPI). Thus the imaginary part ImA is about −1/9 of
the real part ReA and contributes negligibly to the to-
tal cross section near threshold proportional to |A|2. The
threshold T–matrix is a pseudoscalar, it is symmetric
under the exchange of the two ingoing protons σ1 ↔
σ2, p → −p. Furthermore (1) incorporates the Pauli ex-
clusion principle for the (indistinguishable) outgoing pro-
tons, since left multiplication with the spin exchange op-
erator (1+σ1 ·σ2)/2 leads to a minus sign by the identity:
1
2 (1+σ1·σ2) (iσ1−iσ2,σ1×σ2) = −(σ1×σ2, iσ1−iσ2).
Diagrams with crossed proton lines are therefore auto-
matically included. Approximating the near threshold T–
matrix by the T–matrix exactly at threshold one gets for

the unpolarized total cross section

σtot(Tlab) =
M4µ

√
4 + µ

16π2(2 + µ)9/2
|A|2 (Tlab − T th

lab)2 , (4)

with µ = mπ/M . Note that the flux and three-body phase
space factors have been approximated in (4) by an an-
alytical expression which is accurate within a few per-
cent in the threshold region. Such a form has already
been proven to be quite accurate in chiral perturbation
theory studies of the reactions γp → π0π0p [19] and
πN → ππN [20], where γ denotes a real photon. In the
case of pp → ppπ0, however, such an approximation is
not sufficient near threshold. This can be seen e.g. by tak-
ing the near threshold data of [1,2] and dividing them by
the three-body phase space factor ∼ (Tlab − T th

lab)2, i.e.
σtot(Tlab) = C · (Tlab − T th

lab)2. The resulting values for
C are not constant in energy. This, of course, has to do
with the strong pp final–state interaction in the 1S0 par-
tial wave. So before we can extract a value for |A|, we have
to correct for the final–state interaction.

2.2 Treatment of the final–state interaction

The final–state interaction in the 1S0 di–proton state mod-
ifies the simple phase–space formula (4). We follow here a
procedure derived by Watson [21] where one essentially
assumes that final–state interaction is taking place only
when the nucleons are on their mass–shell. In this ap-
proach, the unpolarized total cross section for pp→ ppπ0

including final–state interaction takes the form

σtot(Tlab) = |A|2
(M

4π

)3 2
√
Tlab

(2M + Tlab)3/2

∫ Wmax

2M

dW

(5)
×
√

(W 2 − 4M2)λ(W 2,m2
π, 4M2 + 2MTlab)Fp(W ) .

Here, Fp(W ) is the correction factor due the final–state
interaction. We evaluate it in the effective range approxi-
mation. This is of course a very strong assumption but it
allows to explain the energy dependence of the experimen-
tal total cross sections very accurately in terms of a single
constant amplitude A. Separating off the final–state inter-
action in that way, we can then pursue a diagrammatic ap-
proach to the (on-shell) production amplitude A. This will
allow us to investigate in a simple fashion the role of one-
pion exchange and chiral loop effects together with shorter
range exchanges due to heavier mesons. For a more com-
plete dynamical description including off-shell final–state
interactions and so on, a microscopic model treating also
(unobservable) half–off shell effects is needed. After these
remarks, we return to the effective range approximation,
in which the function Fp(W ) takes the form

Fp(W ) =
4 sin2 δ0(W )
a2
p(W 2 − 4M2)

=
{

1 +
ap
4

(ap + rp)(W 2 − 4M2)

+
a2
pr

2
p

64
(W 2 − 4M2)2

}−1

(6)



262 V. Bernard et al.: Novel approach to pion and eta production in proton-proton collisions near threshold

Table 1. Extracted values for the threshold amplitude |A| for the proton laboratory kinetic energies Tlab and cross sections
σtot of [1].

Tlab [MeV] 282.2 285 290 295 300.3 308 314 319 325.6

σtot [µb] 0.148 0.56 1.31 2.06 3.07 4.47 5.25 6.18 7.71

|A| [fm4] 2.42 2.73 2.69 2.64 2.70 2.71 2.64 2.66 2.73

with W the final–state di–proton invariant mass and
λ(x, y, z) = x2 + y2 + z2 − 2yz − 2xz − 2xy the Källen
function. Wmax =

√
4M2 + 2MTlab −mπ is the kinemat-

ical endpoint of the di–proton invariant mass spectrum.
Furthermore, ap = (7.8098±0.0023) fm and rp = (2.767±
0.010) fm, taken from [22], are the scattering length and
effective range parameter for elastic pp-scattering includ-
ing electromagnetic effects. Note that we have fixed the
normalization of the correction factor Fp(W ) such that in
the limit of vanishing scattering length ap (i.e. vanishing
final–state interaction), Fp(W ) becomes identical to one
(in the effective range approximation). Furthermore, the
condition Fp(2M) = 1 ensures that there is no final–state
interaction effect exactly at threshold, as it must be ac-
cording to the definition of the threshold amplitude A in
(1). In appendix C we give a simple derivation of Fp(W )
in scattering length approximation (i.e. for rp = 0) using
effective field theory methods.

With the help of (5,6) we are now in the position to
extract the values of |A| as shown in Table 1. We ignore
the data point at the lowest energy since that close to
threshold a better treatment of the infinite range Coulomb
interaction in terms of proton wave functions would be
needed. The empirical value of A is thus

A(exp) = (2.7− i 0.3) fm4 , (7)

anticipating the positive sign of the real part from the
calculation in Sect. 3. Since we are mostly interested in
achieving a qualitative picture of the underlying produc-
tion process, we refrain from assigning an uncertainty to
this number. This number should be comparable to the
one found by Adam et al. [23], who employ essentially
the same method to correct for the final–state interaction
but use a different (unspecified) normalization of the T–
matrix. In Fig. 2 we show the resulting total cross sections
in comparison to the data of [1,2] using (5,6,7).

3 Meson–exchange contributions

In this section, we work out a variety of one–boson ex-
change contributions related to chiral (pion) and non–
chiral (vector meson) physics to the amplitude A.

3.1 Tree level Goldstone boson contributions

In this and the following paragraph, we consider tree level
and one–loop pion exchanges contributing to the ppπ0

production process at threshold. Due to the large pro-

Fig. 2. Fit to the total cross section for pp→ ppπ0 as described
in the text (solid line). The data are from [1] (boxes) and [2]
(crosses). The dashed line is explained in Sect. 3.4

ton momentum even at threshold, |p | '
√
Mmπ, it is not

appropriate to employ the frequently used heavy baryon
formalism for the nucleons. Let us demonstrate the failure
of the heavy baryon approach for a simple (but generic)
example. Consider diagram b) in Fig. 3 which involves
a propagating nucleon after emission of the real π0. We
show that this nucleon propagator can not be expanded
in powers of 1/M in the usual way. Let vµ = (1,0 ) be
the four–vector which selects the center–of–mass frame.
The four–vector of the propagating nucleon is Mv + k
with kµ = (−mπ/2,p ) and k2 = −Mmπ. We start on the
left hand side with the correct relativistic result and then
perform the usual 1/M expansion of the heavy baryon
formalism,

− 1
mπ

=
2M

(Mv + k)2 −M2
=

1
v · k + k2/2M

=
1
v · k

∞∑
n=0

( −k2

2M v · k

)n
= − 2

mπ

∞∑
n=0

(−1)n. (8)

One sees that infinitely many terms of the 1/M–expansion
contribute to the same order. The resulting series does
not even converge and oscillates between zero and twice
the correct answer. The source of this problem is the
extreme kinematics of the reaction NN → NNπ with
|p | '

√
Mmπ. In that case the leading order opera-
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Fig. 3. Feynman graphs for neutral pion production. (a) and
(b) are the direct terms, with meson exchangeM = π0, η, ω, ρ0.
(c) is the rescattering graph. The heavy dot denotes the second
order isoscalar chiral ππNN–vertex. Graphs where the pion
(dashed line) is emitted from the other proton (solid) line and
graphs with crossed outgoing proton lines are not shown

tor O(1) = i v · ∂ and the next–to–leading order oper-
ator O(2) = −∂ · ∂/2M lead to the same result, here,
±mπ/2. The heavy baryon formalism (and therefore also
HBChPT) can not cope with external momenta as large
as |p | '

√
Mmπ. This problem is merely related to “triv-

ial” kinematics and can be immediately overcome in fully
relativistic calculations. In the latter one does not pre-
sume that vertices and propagators can be consistently
expanded in inverse powers of the large nucleon mass M .
The occurrence of such non–expandable nucleon propaga-
tors is generic to NN → NNπ and they will of course also
enter in loop diagrams. In order to treat correctly the kine-
matics, one has to evaluate the loops relativistically, even
though this may spoil the one–to–one correspondence be-
tween the loop and small momentum/quark–mass expan-
sion. A consistent power counting scheme for processes
NN → NNπ involving loops of arbitrary high order is
not in sight at the moment.

We thus turn to the relativistic description of the chi-
ral pion–nucleon system. Instead of giving the Lagrangian
(see e.g. [24]), we mention only the relevant pion–nucleon
vertices. The πNN–vertex (and also the ηNN -vertex) is
of pseudovector type as required by chiral symmetry. The
second order isoscalar chiral ππNN contact interaction,
π0(q1) +N(p1)→ π0(q2) +N(p2) reads,

i

f2
π

{
− 4c1m2

π + 2c3q1 · q2

+
c′2

2M

[
(p1 + p2) · q1 6q2 +(p1 + p2) · q2 6q1

]
+

c′′2
2M2

(p1 + p2) · q1 (p1 + p2) · q2

}
. (9)

This form is unique since on mass–shell it gives the most
general second order (s ↔ u) crossing symmetric poly-
nomial contribution to the invariant isoscalar πN ampli-
tudes,

A+(s, u) =
1
f2
π

{
− 4c1m2

π + c3(s+ u− 2M2)

+
c′′2

8M2
(s− u)2

}
,

B+(s, u) =
c′2

2Mf2
π

(s− u) , (10)

with s and u the usual Mandelstam variables. The low–
energy constants c1, c′2, c

′′
2 , c3 have already been deter-

mined (at tree level) in [18] from low–energy πN data
and we list their values for completeness:

c1 = −0.64 , c′2 = −5.63 ,
c′′2 = 7.41 , c3 = −3.90 , (11)

all given in GeV−1. As it was shown in [25], the numerical
values of most of these low–energy constants (c′2, c

′′
2 , c3)

can be understood largely from intermediate ∆ excita-
tions.

Consider first one–pion (π0) exchange. The respective
diagrams are shown in Figs. 3a,b (with M = π0). We
stress that these are relativistic Feynman graphs, i.e. in
the intermediate states they contain the full relativistic
fermion propagator which sums up several time-orderings.
We also note that the graphs with the pion exchange after
the emission of the π0 from one of the proton lines does
not belong to the final state–interaction according to our
treatment (as an on–shell NN–process). We find

A(π,dir) =
g3
πN

4M4(1 + µ)(2 + µ)
= 0.48 fm4 , (12)

with gπN = 13.4 the strong pion–nucleon coupling con-
stant. We remark that it is often claimed that the ppπ0

final–state should be suppressed due to chiral symme-
try. This argument is based on the assumption of the ex-
changed pion being soft, which, however, is not the case.
The π0p amplitude with one π0 off its mass–shell is only
of linear order in the pion mass mπ (since k2 = −Mmπ)
and this factor of mπ is cancelled by the pion propagator
[mπ(M+mπ)]−1. Consequently, as (12) shows, the thresh-
old amplitude A in 1π–exchange approximation does not
vanish in the chiral limit as it is often claimed. In fact,
chiral symmetry does not distinguish the pp→ ppπ0 pro-
cess from the other NN → NNπ channels. Next, there is
the so–called π0 rescattering, as shown in Fig. 3c,

A(π,res) =
gπN µ

f2
πM(1 + µ)

×
[c3

2
+
(

1 +
µ

4

)
c′2 +

(
1 +

µ

4

)2

c′′2 − 2c1
]

= 0.46 fm4 , (13)

with fπ = 92.4 MeV the pion decay constant. Again, there
is a marked difference to the heavy baryon case. To leading
order, the relativistic couplings c′2 , c

′′
2 combine to give the

c2 = c′2 + c′′2 term in the heavy baryon approach. In previ-
ous HBChPT calculations the c2 term was found with an
incorrect prefactor 1/2. The relative factor of two in the
relativistic calculation comes from the fact that products
of nucleon and pion four-momenta are not dominated any-
more by the term nucleon mass times pion energy. For the
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Fig. 4. Class of one loop graphs involving the ππ
interaction. For further notation, see Fig. 3

reaction NN → NNπ the product of the nucleon and pion
three-momenta can be equally large, since |p | '

√
Mmπ.

Interestingly, the combination of low–energy constants
in (13) is dominated (to about 90%) by the last term
∼ −2c1, which is related to the so–called pion–nucleon
sigma–term, σπN (0) = −4c1m2

π (to leading order). There-
fore the strength of the π0–rescattering (at threshold) is
almost entirely due to this particular chiral symmetry
breaking term. The effects from the ∆(1232)–resonance
encoded in the low–energy constants c′2, c

′′
2 , c3 turn out

to be very small. In order to check this interpretation, we
have evaluated the contributions from explicit ∆(1232)–
excitations, using the Rarita–Schwinger formalism and
the well–satisfied coupling constant relation gπN∆ =
3gπN/

√
2. We find:

A(∆) =
g3
πN µ

16M2
∆M

3(1 + µ)

×
{
M2(4 + µ)(M∆ +M(1− µ))

M2
∆ +M2(2µ− 1)

+ (2Z − 1)

×
[
4(1 + Z)M∆ −M(2Z(3 + µ) + 1 + µ)

]}
= 0.04 fm4 , (14)

where we used for the off–shell parameter Z = −0.3,
the value which maximizes the ∆(1232)–contribution to
the P33 πN scattering volume. Such a value of Z is also
consistent with neutral pion photoproduction off protons.
The small value of A(∆) confirms the interpretation of the
rescattering contribution (13) given above.

The next Goldstone boson which can contribute is the
η(547). Consider the graphs in Figs. 3a,b with M = η.
We find

A(η) =
gπNg

2
ηN µ

4M2(m2
η +M2µ)(2 + µ)

= 0.02 fm4 , (15)

where we have employed the SU(3) value for the ηN cou-
pling constant together with the simplified ratio of the
octet axial vector coupling constants D/F = 1.5, which
leads to gηN = 4.6. Since this contribution is tiny, the
precise value of this coupling does not matter.

3.2 Pion loop effects

We do not attempt a full one–loop calculation here, but
rather consider certain (simple) classes of loop graphs

which are genuine to the process under consideration. We
use dimensional regularization and minimal subtraction
to eliminate divergences and set the renormalization scale
equal to the proton mass M . For estimating the genuine
size of pion loop effect, such a procedure ignoring renor-
malization via counterterms should be sufficient and the
resulting numbers should be considered indicative.

Consider first a certain class of pion loop diagrams
which involve the ππ interaction, compare Fig. 4. Notice
that only the full class of diagrams is independent of the
choice of the interpolating pion field. Within the calcula-
tional scheme mentioned above, this class of graphs gives

A(loop,1) =
g3
πN (2 + µ)(1− µ)

(8πMfπ)2(1 + µ)

×
{

lnµ− 1
2

+
√

1 + 4µ ln
1 +
√

1 + 4µ
2
√
µ

+
∫ 1

0

dx

∫ x

0

dy
y

y2+µ2(1−y)+µ(1−x)(x−y)

}
= −0.10 fm4 . (16)

We remark that the expression in the curly brackets is not
singular in the chiral limit µ → 0. It has the following µ-
expansion: −1/2 +

√
µπ2/8 +O(µ lnµ). Again, one faces

here the usual problem of relativistic loops. A(loop,1) does
not vanish in the chiral limit µ → 0 and is therefore not
suppressed by powers of the pion mass mπ compared to
tree graphs. Nevertheless, its numerical value is small. The
threshold amplitude A(loop,1) is actually proportional to
the relativistic loop contribution [24] to the nucleon scalar
form factor evaluated at an invariant momentum transfer
squared t = −Mmπ,

A(loop,1) =
gπN (2 + µ)(µ− 1)
12Mf2

πm
2
π(1 + µ)

σπN (−M2µ)loop . (17)

Whereas [16] claimed that these loop graphs were size-
able and are essential for a quantitative description of the
data, we find that they give only a small −4% correction
compared to the empirical value of A. The reason for this
discrepancy is to be found in the inappropriate applica-
tion of the heavy baryon formalism to pp→ ppπ0 in [16].
Next, we consider the entire class of loop graphs propor-
tional to gπN/f4

π , see graphs in Fig. 5 and Fig. 6. Figs.5
(a) and (b) represent π+π− exchange between protons (in
form of a bubble diagram) before or after the emission of
the neutral pion. We find:
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Fig. 5. Further loop diagrams proportional to gπN/f
4
π . (a) and

(b) represent π+π− exchange between protons, (c) and (d) are
the π+ rescattering diagrams. For further notation, see Fig. 3

A(loop,2) =
gπN (2− µ)µ

768π2f4
π(2 + µ)

{
(1 + 6µ) lnµ− 5

6
− 4µ

+ (1 + 4µ)3/2 ln
1 +
√

1 + 4µ
2
√
µ

}
= −0.01 fm4 . (18)

Note that these loop corrections vanish in the chiral limit
µ → 0. In the class of diagrams proportional to gπN/f

4
π

there is also π0–exchange between the protons with π+

rescattering on one of the nucleons, see (c) and (d) in
Fig. 5. These graphs give

A(loop,3) =
gπN µ

[8πf2
π(1 + µ)(1− 2µ)]2

×
{

(1 + µ)(1− 2µ)(4− 6µ− µ2)

+ (11− 16µ+ µ2 + µ3)µ2 lnµ

+µ(1 + µ)(2− 2µ− µ2)
√
µ(4 + µ)

× ln
2 + µ+

√
µ(4 + µ)

2

}
= 0.22 fm4 . (19)

This contribution vanishes again in the chiral limit µ→ 0.
Finally, there are graphs where a π+π−–pair is emitted
from one proton and the π0 emission proceeds via charge
exchange from the other nucleon line, see Fig. 6. Straight-
forward evaluation of these diagrams gives

A(loop,4) =
gπN µ

(8πf2
π)2

{
µ(9µ− 2− µ2)

2(1 + µ)(1− 2µ)

+
6− 12µ+ 19µ2 + 2µ3 + µ4

2(1 + µ)2(1− 2µ)2
µ2 lnµ

+
µ2(2− µ)
2(1− 2µ)2

√
µ(4 + µ) ln

2 + µ+
√
µ(4 + µ)

2

+
∫ 1

0

dx

∫ x

0

dy y

×
[

2x− 2− 5y + µ(3− 3x− y) + µ2(3− x)
y2 + µ(1− x)(x− 3y) + µ2(1− 2y + xy)

+
2− 2x− 3y + µ(x− 1) + µ2

y2 + µ(1− x)(x+ y) + µ2(1− y)

]}
= −0.25 fm4 , (20)

a contribution which again vanishes in the chiral
limit. Summing all these various loop contributions in
(16,18,19,20), we find

A(loop) = −0.14 fm4 , (21)

which is a rather small number as compared to the tree
level pion exchange or the vector meson contributions
(Sect. 3.3). We observe sizeable cancelations between the
various classes of loop graphs and conclude therefore that

Fig. 6. Loop diagrams with π0 emission via charge
exchange. For further notation, see Fig. 3



266 V. Bernard et al.: Novel approach to pion and eta production in proton-proton collisions near threshold

these do not play a significant role for explaining the
threshold amplitude A. The imaginary part of A is dis-
cussed in appendix B.

3.3 Heavy meson exchanges

Due to the large momenta involved, one expects additional
contributions due to the exchange of heavier mesons,
which are of much shorter range than the pion exchange
considered so far. From the symmetry point of view such
terms are much less constrained and thus exhibit a cer-
tain unavoidable model–dependence. Nevertheless, these
terms can play a significant role as first stressed by Lee
and Riska [7] and confirmed by Horowitz et al. [8]. We
do not discuss here additional effects from vector me-
son nucleon form factors, which are a model–dependent
(and unobservable) concept to account for the finite size
of the hadrons involved. Note also that in a strict field–
theoretical sense such form factors can not be uniquely
defined. At the invariant momentum transfer t = −0.127
GeV2 the form factor effect is not expected to be large.
For example, one expects a 10% effect for typical monopole
form factors with cut–offs Λω,ρ ' 1.5 GeV.

Consider first neutral vector mesons. We start with the
ω(782). There is sizeable uncertainty about its coupling
constant to the nucleon, extreme values are e.g. found in
the dispersion–theoretical analysis of the nucleons electro-
magnetic form factors, gωN ' 21 [27]. However, it is not
clear how one has to transcribe such a value to the one–
boson exchange picture of the NN force. In conventional
boson–exchange models, the inclusion of the correlated πρ
continuum allows one to work with a coupling constant
that is compatible with the SU(3) value, gωN ' 9 or the
value gωN = 10.1±0.9 found from forward NN–dispersion
relations [28]. For a detailed discussion, see e.g. [29]. There
is agreement that the tensor–to–vector coupling ratio of
the ω-meson is very small. If we set κω = 0 and use the
coupling constant gωN = 10, we get

A(ω) =
gπN g

2
ωN (2− µ)

2M2(M2
ω +M2µ)(2 + µ)

= 1.35 fm4 , (22)

which is quite sizeable. In a similar fashion, we evaluate
the ρ(770) contribution. Here, there is less debate about
the coupling constant gρN and also, it is well established
that the tensor–to–vector coupling ratio κρ is large. For
simplicity, we use gρN = 3 (obtained from ρ-universality,
gρN = gρ/2 with gρ = 6) and κρ = 6. That leads to

A(ρ) =
gπN g

2
ρN

2M2(M2
ρ +M2µ)(2 + µ)

×
[
2 + µ(κ2

ρ − κρ − 1) + µ2κρ

(
1 +

9
8
κρ

)]
= 0.48 fm4 . (23)

We note that this form is very different from what has
been used in the literature so far, where one finds the

ω, ρ–exchange to be proportional to µ(1 + κω,ρ). We do
not employ any inappropriate non–relativistic approxima-
tion here and thus obtain the results shown in (22,23).
Note that due to the large tensor–to–vector coupling ra-
tio of the ρ-meson κρ = 6 the terms proportional to µ
and µ2 in the square bracket of (23) are most important.
We have also investigated the role of φ(1020) exchange,
which can be related to the strangeness content of the
nucleon wave function. The values of the φN coupling
constant span a large range, as documented in table 2
of [30]. To get a more precise number, we proceed as fol-
lows. We assume that the tensor–to–vector coupling ra-
tios are given by the dispersive analysis of the nucleon
electromagnetic form factors, κρ = 6.1, κω = −0.16 and
κφ = −0.22 [27]. Using furthermore the SU(3) relation
gωN = 3gρN −

√
2gφN [29] together with gρN = 2.63 [31]

and gωN = 10.1 [28], we have gφN = −1.56. This leads
to A(V) = A(ρ) + A(ω) + A(φ) = (0.38 + 1.40 + 0.02)
fm4 = 1.80 fm4, which is practically identical to the result
obtained above using the simplified coupling constants.
Thus, the sum of the vector meson contributions is fairly
stable against parameter variations and also the φ(1020)
does not play any role. Finally, we remark that substi-
tuting (gρN ,Mρ, κρ) by (e, 0, κp) one can convince oneself
that the one–photon exchange gives a tiny correction of
A(γ) = 0.0085 fm4, as it is of course expected.

Another mechanism, first proposed in this context
in [13], is the emission of the neutral pion from the
anomalous ωρπ-vertex, with the ρ(770) coupling to one
and the ω(782) to the other proton. This type of graph
is similar to well-known meson–exchange currents in elec-
tromagnetic processes. The pertinent interaction vertex,
with its strength given by the coupling constant Gωρπ, can
be determined from the anomalous Wess–Zumino–Witten
term for vector mesons (we only show the part of relevance
here),

Lωρπ = −Gωρπ
fπ

εµναβ (∂µ ων)ρα · ∂βπ , (24)

with εµναβ the totally antisymmetric tensor in four dimen-
sions (ε0123 = −1). Using again the universal ρ-coupling,
gρ = 6, the gauged Wess–Zumino–Witten term for vector
mesons leads to the coupling constant

Gωρπ =
3g2
ρ

8π2
= 1.37 . (25)

Similar values for Gωρπ have been found in [32,33] from
systematic studies of ω(782)– and φ(1020)–decays. The
contribution of the anomalous ωρπ–vertex to A is given
by

A(ωρπ) =
gωNgρN (1 + κρ)GωρπMµ2

2fπ(M2
ω +M2µ)(M2

ρ +M2µ)

= 0.09 fm4 , (26)

which is at first glance quite small. However, due to the
two derivatives appearing in (24), one expects this con-
tribution to be of much larger importance in the P–wave
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amplitudes. An analogous short range mechanism is the π0

emission from the a0ηπ-vertex, proposed in [13]. We have
evaluated the respective contribution to A and found that
it is negligibly small, A(a0ηπ) = 0.003 fm4. Finally, we do
not consider a scalar meson exchange here. First, there is
no scalar meson resonance which couples strongly to the
nucleon and secondly, the fictitious “σ(550)” of one–boson
exchange models just simulates the long and intermediate
range part of uncorrelated 2π–exchange in the NN inter-
action [34]. The latter comes along with pion loops and
is to some extent contained in the loop graphs considered
above.

3.4 Total threshold amplitude

We are now in the position to evaluate the full am-
plitude A from the various contributions. Combining
(12,13,15,21,22,23,26), we get

A(thy) = A(π,dir) +A(π,res) +A(η) +A(loop) +A(ω)

+A(ρ) +A(ωρπ)

= (0.48 + 0.46 + 0.02− 0.14 + 1.35

+ 0.48 + 0.09) fm4

= 2.74 fm4 , (27)

which compares well with the empirical value given in (7).
The resulting total cross section σtot(Tlab) is shown in
Fig. 2 by the dashed–dotted line. Of course, taken the un-
certainty in certain coupling constants and our simplified
treatment of the final–state interaction, the 1% agreement
between our theoretical prediction for A and its empirical
value, (7), should not be taken too serious. We only want
to make the point that these well–known boson–exchange
diagrams, when evaluated fully relativistically, can explain
the near threshold data for pp→ ppπ0. Note also that the
contribution from explicit ∆(1232)-excitation, cf. (14), is
contained in the π0 rescattering term via the low–energy
constants c′2, c

′′
2 , c3.

4 Charged pion production in pp–collisions

In this section we will discuss charged pion production
using the same approach. The T–matrix for charged pion
production in proton–proton collisions, p1(p )+p2(−p )→
p+n+π+, at threshold in the center–of–mass frame reads
(see also appendix A for the general NN → NNπ thresh-
old T–matrix),

Tcm
th (pp→ pnπ+) =

A√
2

(iσ1 − iσ2 + σ1 × σ2) · p

−
√

2B i(σ1 + σ2) · p . (28)

As indicated by the ordering of the three particles pnπ+ in
the final state, the spin–operator σ1 is understood to be
sandwiched between the spin–states of the ingoing proton
p1(p ) and those of the outgoing proton, while σ2 acts be-
tween the proton p2(−p ) and the outgoing neutron. Since

the pn–system at rest can be in a spin–singlet or in a
spin–triplet state two different transitions are possible at
threshold. The threshold amplitude for the singlet tran-
sition 3P0 → 1S0s is by isospin symmetry proportional
(with a factor 1/

√
2) to the threshold amplitude A for the

reaction pp→ ppπ0 introduced in (1). The new threshold
amplitude for the triplet transition 3P1 → 3S1s is called
B and the factor −

√
2 was taken out for convenience in

(28). In analogy to (3) one deduces from unitarity

B = |B| eiδ(3P1) , (29)

with the 3P1 pp phase shift to be taken at T th
lab = 292.3

MeV, where δ(3P1) = −28.1◦ (FA95 solution of VPI). Be-
cause of this larger phase fixed by unitarity the imaginary
part ImB will contribute non–negligibly to the total cross
sections near threshold. Notice, that the abovementioned
unitarity relation (29) neglects the (small) inelasticity due
to the pp → dπ+ channel which opens 4.8 MeV lower at
Tlab = 287.5 MeV.

4.1 Extraction of the threshold amplitudes

Employing the same method as in Sect. 2.2 to correct for
the strong S-wave pn final–state interaction, the unpolar-
ized total cross section for pp→ pnπ+ reads,

σtot(Tlab) =
(M

4π

)3 2
√
Tlab

(2M + Tlab)3/2

∫ Wmax

M+Mn

dW

W

×
√
λ(W 2,M2,M2

n)λ(W 2,m2
π+ , 4M2 + 2MTlab)

×
{
|A|2 Fs(W ) + 2|B|2 Ft(W )

}
. (30)

The correction factors from the pn singlet and triplet S–
wave final state interaction are given in the effective range
approximation by

Fs,t(W ) =
{

1+as,t(as,t+rs,t)P 2
∗+

1
4
a2
s,tr

2
s,tP

4
∗

}−1

, (31)

with W the final–state proton–neutron invariant mass
and Wmax =

√
4M2 + 2MTlab − mπ+ . M still denotes

the proton mass and Mn = 939.57 MeV stands for the
neutron mass. The quantity P 2

∗ = λ(W 2,M2,M2
n)/4W 2

is the squared pn center–of–mass momentum. The sin-
glet and triplet scattering lengths and effective range pa-
rameters for elastic np-scattering are taken from [22],
their empirical values being as = (23.748 ± 0.010) fm,
at = (−5.424 ± 0.004) fm, rs = (2.75 ± 0.05) fm and
rt = (1.759± 0.005) fm. We neglect here the coupling be-
tween the 3S1 and the 3D1 pn–states, which should be very
small at the energies under consideration. Such effects go
beyond the accuracy of the effective range approximation
and our treatment of the pn final–state interaction.

The data base of total cross sections for the process
pp → pnπ+ in the 30 MeV region above threshold con-
sists at present of five data points measured at IUCF
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Table 2. Total cross sections for pp→ pnπ+ as a function of Tlab. The data are taken from [4] and the preliminary data points
from COSY-TOF [35] are marked by an asterik. The (constrained) fit is described in the text

Tlab [MeV] 294.3 295.1 ∗ 298.0 ∗ 299.3 306.3 314.1 319.2

σexp
tot [µb] 0.71± 0.04 1.1± 0.3 ∗ 3.84± 0.37 ∗ 4.81± 0.24 13.91± 0.65 25.5± 1.6 41.1± 1.7

σfit
tot [µb] 0.57 1.07 3.46 4.81 13.82 25.76 34.14

[4]. We leave out the data point at the highest energy
Tlab = 319.2 MeV where the π+ angular distributions are
no more isotropic and thus P-waves start to become im-
portant. We also found it important to ignore the data
point at the lowest energy Tlab = 294.3 MeV. Using (30)
for the total cross section and the value of |A| = 2.72 fm4

as determined from the pp → ppπ0 data, one finds in a
least square fit of the remaining three data points for the
modulus of the triplet threshold amplitude,

|B| = 3.16 fm4 , (32)

with a very small total χ2 = 0.044. For these values of |A|
and |B| the data point at Tlab = 319.2 MeV is underesti-
mated by 17% in the S-wave approximation (see table 2).
An unconstrained fit of the same three data points gives
|A| = 3.00 fm4 and |B| = 3.15 fm4 with a marginally
smaller total χ2 = 0.042. It is quite remarkable that |A|
is found to be in 10% agreement with the value obtained
from fitting the many precise near threshold pp → ppπ0

data. Due to the very strong pn final–state interaction in
the 1S0 exit channel (as = 23.75 fm) the singlet transi-
tion contributes a factor 30 to 40 less to the total cross
section than the triplet transition. From our fit we get
at the lowest energy Tlab = 294.3 MeV a total cross sec-
tion of 0.57µb, compared to the experimental value of
(0.71± 0.04)µb given in [4]. Only if one widens the error
band of this data point by the ±15% absolute normaliza-
tion uncertainty it becomes (at the lower end) marginally
consistent with the remaining data. If, however, the data
point at Tlab = 294.3 MeV were included in an uncon-
strained fit, very different values of the threshold ampli-
tudes, |A| = 6.76 fm4 and |B| = 2.91 fm4, would be found
with a total χ2 = 1.0. In particular |A| would be a fac-
tor 2.5 larger than the one obtained from the fit to the
pp → ppπ0 data. Of course, such a large deviation from
isospin symmetry is unacceptable.

Anticipating the positive sign of the real part from the
calculation in the following section and using the infor-
mation from the 3P1 phase shift, one gets the following
experimental value of the triplet threshold amplitude B,

B(exp) = (2.8− i 1.5) fm4 . (33)

This number should be considered indicative since the sys-
tematic error of the extraction method is not under con-
trol when only three data points are fitted. Notice also
that the imaginary part is fairly sizeable, quite different
from A, the threshold amplitude for pp→ ppπ0.

4.2 Diagrammatic approach

Next, we turn to the evaluation of the relativistic Feynman
diagrams contributing to pp→ pnπ+ at threshold. In ad-
dition to the ones considered for pp→ ppπ0, there is now
the possibility for isovector pion–rescattering. The chiral
πN Lagrangian contains such vertices at leading order
(the so–called Weinberg–Tomozawa vertex) and at next–
to–leading order (a vertex proportional to the low–energy
constant c4 = 2.25 GeV−1). In fact there are always two
isovector rescattering diagrams, one with a π0 and an-
other one with a π+ being exchanged between the nucle-
ons. The isospin factors of both diagrams are equal with
opposite sign. However, before adding them one has to ac-
count for the fact that the role of p and n is interchanged
in both graphs. This is done by multiplying those graphs
where the final state neutron n comes from the initial
state proton p1(p ) with the negative spin–exchange oper-
ator −(1+σ1 ·σ2)/2. Altogether, one finds from isovector
pion–rescattering at leading and next–to–leading order,

B(π,iv) =
gπN (c4mπ − 1)
2M2f2

π(1 + µ)
= −0.82 fm4 . (34)

Of course, we neglect here the small isospin breaking due
the different charged and neutral pion masses and the dif-
ferent proton and neutron masses. From the other pseu-
doscalar meson (π and η) exchange diagrams, one finds
the following contributions to the triplet amplitude,

B(π,dir) =
g3
πN (3 + 2µ)

4M4(1 + µ)(2 + µ)
= 1.58 fm4 , (35)

B(π,res) = A(π,res) = 0.46 fm4 , (36)

B(η) = −A(η) = −0.02 fm4 , (37)

(see also (13,15)). Note that the (direct) 1π–exchange con-
tribution B(π,dir) is rather large due to an enhancement
factor 3 + 2µ in comparison to A(π,dir) given in (12). The
dominance of the chiral one–pion exchange in the triplet
transition 3P1 → 3S1s found here supports the argument
of [15] concerning the dominant role of the long range
(chiral) pion exchange in the reaction pp → dπ+ which
proceeds via the same transition near threshold.

From the vector meson (ρ and ω) exchange diagrams
one finds the following contributions to B,

B(ω) =
gπNg

2
ωN

M2(M2
ω +M2µ)(2 + µ)

= 1.46 fm4 , (38)

B(ρ) =
gπNg

2
ρN (µκρ − 4)

4M2(M2
ρ +M2µ)(2 + µ)

[
3 + µ

(
2 +

κρ
4

)]
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= −0.37 fm4 , (39)

B(ωρπ) = 0 . (40)

One observes that the sizeable ω–exchange contribution
B(ω) is approximately equal to A(ω) given in (22). Note
also that the expression for ω–exchange cannot be recov-
ered by simply substituting the vector meson mass and
coupling constants in the expression for ρ–exchange. The
reason for that are certain diagrams with (charged) ρ+–
exchange which have no analogy in the case of the (neu-
tral) ω–meson. In the spirit of vector meson dominance
one could also think of an isovector πρNN contact vertex
of the form

LπρN =
gρgπN
2M

N̄γµγ5τ · (π × ρµ )N . (41)

The form of this vertex and the coupling constant in front
are copied from the Kroll–Ruderman term for charged
pion photoproduction replacing the charge e by the uni-
versal ρ–coupling gρ = 6 and the photon field by the
isotriplet ρ–meson field ρµ. The respective ρ0 and ρ+ ex-
change diagrams give rise to the following contribution to
the triplet amplitude,

B(ρ,KR) =
gπNgρgρN

M2(M2
ρ +M2µ)

(
1− µ

4
κρ

)
= 0.45 fm4 . (42)

Admittedly, this contribution is somewhat speculative
since the Kroll–Ruderman vertex for ρ–mesons presumes
a particular realization of vector meson dominance. We
do not investigate in further detail pion loop diagrams
contributing to B, since they will turn out to be small in
analogy to the amplitude A discussed in Sect. 3.2 (for the
classes of diagrams calculated there). The imaginary part
of the triplet amplitude B can only be generated in one–
pion loop approximation by the two–pion exchange box
diagrams shown in Fig. 9 and evaluated in appendix B. It
can, however, not be expected that the one–pion loop ap-
proximation will be sufficiently accurate, since the process
NN → NNπ at threshold is also sensitive to short dis-
tance dynamics. This needs further study but goes beyond
the scope of this paper. A detailed discussion of the imag-
inary parts of A and B in one pion loop approximation is
given in appendix B. Summing up the various tree level
contributions given in (34,35,36,37,38,39,40,42) we get,

B(thy) = 2.74 fm4 , (43)

which is very close the real part of the experimental
value in (33), ReB(exp) = 2.8 fm4. We thus conclude
that also the real part of the triplet amplitude ReB can
be well understood in terms of these well-known tree–
level meson exchange diagram when evaluated fully rel-
ativistically. Of course, the relatively large imaginary part
ImB(exp) = −1.5 fm4 (more than half as large as the
empirical real part) remains unexplained in tree approx-
imation. As mentioned earlier this imaginary part origi-
nates (because of unitarity) from the fact that the 3P1 pp
phase shift is rather large at the pion production thresh-
old. The large imaginary part ImB thus reflects the strong

Fig. 7. Pion production cross section as a function of the pn
invariant mass W . The three curves corresponds to Tlab =
299.3, 306.3 and 314.1 MeV, in ascending order

initial state interaction in the 3P1 entrance channel. For
the singlet transition amplitude A the situation is differ-
ent. Accidentally, the 3P0 pp phase shift is very small at
the pion production threshold and thus there is only weak
initial state interaction in the 3P0 entrance channel. An-
other mechanism which could contribute (significantly) to
ImB is the two–step process pp → dπ+ → pnπ+. The
threshold for the deuteron channel pp → dπ+ opens 4.8
MeV lower at Tlab = 287.5 MeV and the corresponding
total cross sections are more than an order of magnitude
larger [3,4] than the ones for pp→ pnπ+.

We have done several checks on our treatment of the
pn final–state interaction. First, we compared the effec-
tive range approximation with the empirical values of the
1S0 and 3S1 pn phase shifts in the energy range relevant
here and found that deviations are smaller than 2%. Sec-
ondly, we have studied the π+ production cross section
as a function of the pn invariant mass W (given by (30)
without dW–integration) and found good agreement with
the data of [4], cf. Fig. 7. From all this we conclude that
our treatment of the pn final–state interaction is fairly
realistic.

Finally, we believe that all the features of the pro-
cesses pp → pNπ that we have learned here from the
relativistic diagrammatic approach presented here will be
useful for further studies within more complete dynam-
ical models, which e.g. treat initial– and final–state in-
teractions simultaneously. We also remark that a similar
covariant one–boson exchange model has been developed
in [36], which describes the data at much higher energies,
0.3 GeV < Tlab < 2.0 GeV. The same model has been ap-
plied to threshold data in [37]. These authors introduce in
addition (unobservable) meson nucleon form factors and
energy–dependent coupling constants. This makes a di-
rect comparison between their work and ours very diffi-
cult. However, no isoscalar pion rescattering and no pion
loops are considered. Similar to our finding it is concluded
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that ω(782) exchange is important close to pion produc-
tion threshold and that the ∆(1232) plays no role.

5 Eta–meson production in pp–collisions

In this section we will discuss η–production using a simi-
lar approach. The T–matrix for η–production in proton–
proton collisions, p1(p )+p2(−p )→ p+p+η, at threshold
in the center–of–mass frame reads (see also appendix A),

Tcm
th (pp→ ppη) = C (iσ1 − iσ2 + σ1 × σ2) · p , (44)

with C the (complex) threshold amplitude for η–
production. The η–production threshold is reached at
a proton laboratory kinetic energy T th

lab = mη(2 +
mη/2M) = 1254.6 MeV, where mη = 547.45 MeV de-
notes the eta–meson mass.

5.1 Extraction of the threshold amplitude

In the case of η–production near threshold it is also im-
portant to take into account the ηp final–state interaction,
since the ηN–system interacts rather strongly near thresh-
old. In fact a recent coupled–channel analysis [38] of the
(πN, ηN)-system finds for the real part of the ηN scatter-
ing length Re aηN = (0.717 ± 0.030) fm. For comparison,
this value is a factor 5.7 larger than the π−p scattering
length, aπ−p = 0.125 fm [39], measured in pionic hydro-
gen.

We assume that the correction due to the S–wave ηp
final–state interaction near threshold can be treated in ef-
fective range approximation analogous to the S–wave pp
final–state interaction. We furthermore make the assump-
tion that the final state interactions in the pp subsystem
and in the two ηp subsystems do not influence each other
and that they factorize. These are of course very strong
assumptions, but as we will see soon, such a simple ansatz
for the final–state interaction in the ppη three–body sys-
tem allows to describe rather accurately the energy de-
pendence of the total cross section σtot(pp → ppη) near
threshold. Using the factorization ansatz mentioned be-
fore, the unpolarized total cross section for pp → ppη
reads,

σtot(Tlab)= |C|2
(M

4π

)3 2
√
Tlab

(2M + Tlab)3/2

∫ Wmax

2M

dW WFp(W )

×
∫ s+η

s−η

dsη Fη(sη)

×Fη(6M2+2MTlab+m2
η−W 2−sη), (45)

with Wmax =
√

4M2 + 2MTlab −mη the endpoint of the
di–proton invariant mass spectrum and Fp(W ) given by
(6). The variable sη is the invariant mass squared of the
first ηp–pair and the argument of the last function Fη(s̃η)
in (45), s̃η = 6M2+2MTlab+m2

η−W 2−sη, is the invariant

mass squared of the second ηp–pair. The expressions

s±η = 3M2 +MTlab +
1
2

(m2
η −W 2)

± 1
2W

√
(W 2 − 4M2)λ(W 2,m2

η, 4M2 + 2MTlab)

(46)

give the boundaries of the ppη three–body phase space in
the (sη,W 2)–plane. Obviously, the formula for the total
cross section, (45), is invariant under the permutation of
the two ηp–pairs, sη ↔ s̃η, since s±η = s̃∓η . Furthermore,
the correction factor Fη(sη) due to the S-wave ηp final–
state interaction reads in effective range approximation,

Fη(sη) =
∣∣∣∣ f0+

ηN (sη)
aηN

∣∣∣∣2
=
∣∣∣∣ 1− i aηN

2√sη

√
λ(sη,m2

η,M
2)

+
aηN rηN

8sη
λ(sη,m2

η,M
2)
∣∣∣∣−2

. (47)

Here, f0+
ηN (sη) is the S-wave ηN elastic scattering am-

plitude. The (complex) ηN scattering length aηN =
((0.717± 0.030) + i (0.263± 0.025)) fm is taken from [38]
and the (complex) ηN effective range parameter rηN =
((−1.50 ± 0.13) − i (0.24 ± 0.04)) fm stems from [40]. It
is important to note that both [38] and [40] using quite
different methods agree within error bars on the value of
the ηN scattering length aηN .

Using (45,46,47) for the total cross section and the
central values of aηN and rηN one finds in a least square fit
of the six data points from CELSIUS [5] for the modulus
of the threshold amplitude

|C| = 1.32 fm4 , (48)

with a total χ2 = 3.8. The resulting energy dependent
cross section from threshold up to Tlab = 1375 MeV
is shown in Fig. 8 together with the data from CEL-
SIUS [5].1 It is rather astonishing that one can describe
the total cross section data up to 100 MeV above thresh-
old with a constant threshold amplitude C and a simple
factorization ansatz for the three–body final–state inter-
action.

5.2 Diagrammatic approach

Next, we turn to the evaluation of the relativistic Feynman
diagrams contributing to pp → ppη at threshold. The re-
sulting expressions can essentially be copied from the case
pp → ppπ0 making only the substitution (gπN ,mπ) →
(gηN ,mη). One finds for π0, η, ω, ρ0–exchange

C(π0) =
gηNg

2
πNmη

4M2(m2
π +Mmη)(2M +mη)

= 0.17 fm4, (49)

1 Earlier data from SATURNE [41–43] do not have the same
accuracy and are not considered further.
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Fig. 8. The eta–production cross section σtot(pp→ ppη) as a
function of Tlab. The data are taken from [5]

C(η,dir) =
g3
ηN

4M2(M +mη)(2M +mη)
= 0.02 fm4, (50)

C(ω) =
gηNg

2
ωN (2M −mη)

2M2(M2
ω +Mmη)(2M +mη)

= 0.23 fm4,(51)

C(ρ0) =
gηNg

2
ρN

2M(M2
ρ +Mmη)(2M +mη)

×
[
2 +

mη

M
(κ2
ρ − κρ − 1) +

m2
η

M2
κρ

(
1 +

9
8
κρ

)]
= 0.50 fm4. (52)

Note that the ρ0 exchange has become dominant because
of the large tensor–to–vector coupling ratio κρ = 6 and the
larger ratio mη/M = 0.58.2 Besides these diagrams with
η–emission before and after meson exchange between the
protons, one has to account for the strong ηp rescattering.
Microscopically, the strong ηN S-wave interaction origi-
nates (among other things) from the nucleon resonance
S11(1535) which is supposed to have a very large coupling
to the ηN–channel. Instead of introducing this resonance
together with several parameters (mass, width, coupling
constant), we will merely introduce here a local NNηη
contact vertex of the form

LηN = K N̄(x)N(x) η2(x) . (53)

The interaction strength K is then determined by the real
part of the ηN scattering length. This means that the
pseudovector Born graphs plus the contact vertex sum up
to give the empirical value of Re aηN = 0.717 fm. This
leads to the equation

4π
(

1 +
mη

M

)
Re aηN = 2K −

g2
ηNm

2
η

M(4M2 −m2
η)
, (54)

2 Interestingly, recent measurements of the angular distri-
butions in pp → ppη suggest the dominance of vector meson
exchange [44].

which results in a value of K = 7.41 fm. The η–
rescattering graph (analogous to Fig. 3c) leads to the fol-
lowing contribution to the threshold amplitude,

C(η,res) =
gηN K

Mmη(M +mη)
= 0.40 fm4 . (55)

Evidently, all contributions to C scale with the (empiri-
cally not well determined) ηN–coupling constant gηN . The
numbers given in (45,46,47,48,51) which add up to the em-
pirical value of |C| = 1.32 fm4 follow with gηN = 5.3. Such
a value of gηN is consistent with all existing empirical in-
formation on it. The SU(3) flavor symmetry connects the
pion–nucleon and eta–nucleon coupling constants via the
D/F ratio (of the baryon octet axial vector couplings),

gηN = gπN
3−D/F√
3(1 +D/F )

. (56)

Using gπN = 13.4, the for our purpose optimal value
gηN = 5.3 requires a ratio D/F = 1.37. In fact a sys-
tematic analysis of semileptonic hyperon decays in [45]
gives D/F = 1.58 ± 0.07, not far from this number. Of
course, SU(3) is broken to some extent by the strange
quark mass. For a recent update, see e.g. [46]. There is one
further contribution we have not discussed so far, related
to the a0ηπ–coupling. This coupling is rather uncertain. If
one assumes that the diagrams with η–emission from the
a0ηπ–vertex contribute with a positive sign,

C(a0ηπ) =
ga0NgπN (cdm2

η − 2cmm2
π)√

6Mf2
π(M2

a0
+Mmη)(m2

π +Mmη)

= 0.05 fm4 , (57)

one can even lower the ηN–coupling constant to gηN =
5.1. We used here ga0N = 4.5 [47] and cd = 32 MeV,
cm = 42 MeV [48]. We also note the one–boson ex-
change model of [47] for elastic NN–scattering uses an
ηN–coupling constant of gOBE

ηN = 6.8 not far from our
value gηN = 5.3. The results of our approach applied to
the reaction pn → pnη are briefly discussed in appendix
A.

The main point we want to make here is that even
the pp → ppη threshold amplitude can be understood in
terms of these well–known meson exchange diagrams when
evaluated relativistically. With rather mild assumptions
on the coupling constant gηN and the form of the ηN–
rescattering one can easily reproduce the empirical value
|C| = 1.32 fm4. For another boson–exchange approach to
η–production emphazising the role of the S11(1535) nu-
cleon resonance, see e.g. [49,50] (and references therein).

5.3 Comments on η′–production near threshold

Finally, we like to comment on the recent η′–production
data near threshold from COSY [51] and SATURNE [43].
Taken face value, the energy dependence of the four COSY
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Table 3. Total cross sections for pp→ ppη′ as a function of the cm excess energy Q =
√

4M2 + 2MTlab − 2M −Mη′ (only the
mean value is given). The data are from [43,51]. The fit is described in the text

Q [MeV] 1.5 1.7 2.9 3.7 4.1 8.3

σexp
tot [nb] 2.5± 0.5 2.9± 1.1 12.7± 3.2 19.2± 2.7 25.2± 3.6 43.6± 6.5

σfit
tot [nb] 5.23 6.29 13.34 18.45 21.09 50.13

cross section data points is best described by the pure
three–body phase space behavior (as shown by the dotted
curve in Fig. 2 of [51]). Of course, it is hard to imagine
that the pp final-state interaction does not play a role
for pp → ppη′ that close to threshold where these data
were measured. We have analyzed the combined COSY
and SATURNE data (six data points) within our ap-
proach including the pp final–state interaction in effective
range approximation. Only if one ignores the COSY data
at the two lowest energies (at cm excess energies of 1.5
and 1.7 MeV, respectively), one can fit the remaining four
data points with a modulus of the threshold amplitude
of |C′ | = 0.21 fm4 with a small total χ2 = 2.4. This fit
leads to values of the total cross section at the two low-
est energy points of 5.2 nb and 6.3 nb (see also Table 3).
These numbers are more than twice as large as the corre-
sponding central values given in [51]. Note, however, that
in Fig. 2 of [51] sizeable uncertainties in the excess energy
are given, e.g. the lowest point is at Q = (1.5± 0.5) MeV.
Our discussion always refers to the central Q values.

Within the relativistic one–boson (π0, η, ω, ρ0) ex-
change model the fit value |C′ | = 0.21 fm4 implies the re-
lation gη′N (1−1.28 ε) = 1.12. Here gη′N denotes the η′N–
coupling constant and ε is the fraction of pseudoscalar
η′NN -coupling (since the η′(958) is no Goldstone boson
there is no reason to favor the pseudovector coupling). In-
terestingly, only the tensor interaction of the ρ–exchange
(∼ κρ) is sensitive to the parameter ε.

According to [52] one can relate the η′N–coupling con-
stant to the quark helicity contribution to the proton spin,
∆Σ =

√
3/2gη′Nfπ/M+0.15. Using the recent determina-

tion ∆Σ = 0.45±0.09 of [53] from deep inelastic polarized
lepton scattering, one can extract within the relativistic
one–boson exchange model an η′N–coupling constant of
gη′N = 2.5 ± 0.7 and a pseudoscalar coupling fraction of
ε = 0.4 ± 0.1. It remains to be seen whether other η′–
production processes (e.g. photoproduction γp→ η′p) are
consistent with these values. The exchange of π0, ω and
ρ0 contribute to |C′ | = 0.21 fm4 approximately 30%, 20%
and 50%, respectively. Another approach based on 1π–
exchange only and a different treatment of the final–state
interaction can be found in [54].

We thank A. Svarc for information on the ηN scattering length.
We are particularly grateful to C. Hanhart who pointed out an
error concerning the calculation of B in the original version of
the manuscript.

A General threshold T–matrices

In this appendix, we write down the general form of the
threshold T–matrices for NN → NNπ and NN → NNη
using the isospin formalism for the two–nucleon system.
In the case of (isovector) pion production one has,

Tcm
th (NN → NNπ) =
A
2

(iσ1 − iσ2 + σ1 × σ2) · p(τ 1 + τ 2) · χ ∗

+
B
2

(σ1 + σ2) · p(iτ 1 − iτ 2 + τ 1 × τ 2) · χ ∗, (A.1)

with χ the three–component isospin wave function of the
final state pion, e.g. χ = (0, 0, 1) for π0–production and
χ = (1, i, 0)/

√
2 for π+–production. The complex ampli-

tude A belongs to the (singlet) transition 3P0 → 1S0s
with conserved total isospin Itot = 1. Similarly, the com-
plex amplitude B belongs to the (triplet) transition 3P1 →
3S1s, also with total isospin Itot = 1. In fact the selection
rules which follow from the conservation of parity, angu-
lar momentum and isospin allow only for these two tran-
sitions. Note also that there is an invariance under the
substitution (A,σ1,σ2,p )↔ (B, τ 1, τ 2,χ

∗).
In the case of (isoscalar) eta production one has,

Tcm
th (NN → NNη) =
C
4

(iσ1 − iσ2 + σ1 × σ2) · p(3 + τ 1 · τ 2)

+
D
4

(iσ1 − iσ2 − σ1 × σ2) · p(1− τ 1 · τ 2) . (A.2)

Again, the complex amplitude C belongs to the (singlet)
transition 3P0 → 1S0s with total isospin Itot = 1 and the
complex amplitude D belongs to the (triplet) transition
1P1 → 3S1s with total isospin Itot = 0. The determina-
tion of the latter amplitude D requires measurements of
the total cross sections for the process pn → pnη hav-
ing neutrons either in the target or the beam. Finally,
we note that the expressions for Tcm

th (NN → NNπ) and
Tcm

th (NN → NNη) incorporate the Pauli exclusion prin-
ciple, since combined left–multiplication with the spin–
exchange operator (1+σ1·σ2)/2 and the isospin–exchange
operator (1 + τ 1 · τ 2)/2 reproduces them up to an impor-
tant minus sign.

For the sake of completeness, we give also the contri-
butions of the one–boson exchange diagrams discussed in
Sect. 5.2 to the (triplet) η–production amplitude D. From
pseudoscalar meson (π, η) exchange one finds,
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Fig. 9. Diagrams that give rise to the non–vanishing
imaginary parts ImA and ImB in one–pion loop ap-
proximation. The projection on the on–shell pp inter-
mediate state is symbolized by the double line cutting
the diagrams. For further notation, see Fig. 3

D(π) = −3 C(π0) = −0.52 fm4 ,

D(η) = C(η,dir) + C(η,res) = 0.42 fm4 , (A.3)

(see (49,50,55)). In addition vector meson (ρ, ω) exchange
gives rise to the terms,

D(ω) =
2M +mη

2M −mη
C(ω) = 0.41 fm4 , (A.4)

D(ρ) =
3gηNg2

ρN

2M(M2
ρ +Mmη)(2M +mη)

×
[
− 2 +

mη

M
(κ2
ρ + κρ − 1) +

m2
η

M2
κρ

(
1 +

7
8
κρ

)]
= 1.50 fm4 , (A.5)

(see (51)). These contributions sum up to D(thy) = 1.81
fm4. The expression for the total cross section σtot(Tlab) of
the reaction pn→ pnη is obtained from (45) replacing the
factor 2|C|2Fp(W ) by |C|2Fs(W ) + |D|2Ft(W ) (see (31))
and we have neglected the small neutron–proton mass dif-
ference.

Recently, total cross sections for pn → pnη have been
extracted from measurements of the process pd → ppnη
at CELSIUS [55]. A fit of the two data points closest to
threshold (at Tlab = 1296 and 1322 MeV) gives for the
empirical triplet η–production amplitude |D|(exp) = 2.3
fm4. Compared to this value the abovementioned theoret-
ical prediction, D(thy) = 1.8 fm4, is only about 20% too
small.

B Imaginary parts from one–pion loop graphs

In this appendix we will give explicit expressions for the
imaginary parts of the pion production threshold ampli-
tudes ImA and ImB as they arise in one–pion loop ap-
proximation. To that order any non–vanishing imaginary
part can only come from those one–loop diagrams which
involve proton rescattering in the initial state. These are
just the two–pion exchange box diagrams shown in Fig. 9.
We apply the Cutkosky cutting rules to evaluate their
imaginary part. It is then given by the product of the up-
per tree–level subgraph (i.e. the threshold pion production
amplitude with 1π–exchange including the leading order
isovector pion rescattering) and of one–half the invariant
pp two-body phase space times the lower tree–level sub-
graph. The latter two factors combine to the 3P0 or 3P1

pp phase shift calculated perturbatively in 1π–exchange

approximation at T th
lab = mπ(2+mπ/2M). Altogether one

gets thus from perturbative unitarity,

ImA = A(π,dir) · δ1π(3P0) , (B.1)

ImB =
(
B(π,iv)
|c4=0 + B(π,dir)

)
· δ1π(3P1) , (B.2)

with A(π,dir), B(π,iv)
|c4=0 and B(π,dir) given in (12,34,35). Us-

ing the projection formulas of [34] to calculate the 1π–
exchange 3P0,1 phase shifts one finds the following analyt-
ical results,

ImA =
g5
πN

√
µ(4 + µ)

64πM4(1 + µ)(2 + µ)2

[
1− µ

4 + µ
ln
(

2 +
4
µ

)]
= 0.54 fm4 , (B.3)

ImB =
g5
πN

√
µ(4 + µ)

64πM4(1 + µ)(2 + µ)2

(
3 + 2µ− 2g−2

A (2 + µ)
)

×
[
µ− 4

2(4 + µ)
− µ2

(4 + µ)2
ln
(

2 +
4
µ

)]
= −0.24 fm4, (B.4)

with gA = gπNfπ/M . One observes that in one–pion loop
approximation ImA is too large by a factor of 2 with the
wrong (positive) sign, whereas ImB is too small by a factor
of 6. Clearly, there is important short range NN–dynamics
missing in one–pion loop approximation as can be seen
by comparing the empirical 3P0,1 phase shifts at T th

lab =
mπ(2 + mπ/2M), δ(3P0) = −6.3◦ and δ(3P1) = −28.1◦,
with the 1π–exchange approximation, δ1π(3P0) = +65.0◦
and δ1π(3P1) = −34.6◦. If one considers all those one–
loop box diagrams which include in the upper part all tree
graphs evaluated in section 4.2 and in the lower part only
the one–pion exchange one gets for the imaginary part of
B,

ImB = B(thy) · δ1π(3P1)

= 2.74 fm4 · (−0.604) = −1.65 fm4 , (B.5)

a value which is in 10% agreement with the empirical
ImB = −1.5 fm4. Of course, this merely reflects the fact
that the empirical 3P1 phase shift at T th

lab is not far from
the one obtained in 1π–exchange approximation. Note,
however, that for the 3P0 phase shift at T th

lab the empiri-
cal value and the 1π–exchange approximation differ by a
large factor of −10.
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C Effective field theory approach to
final–state interaction

In this appendix we want to give an elementary deriva-
tion of the final-state interaction correction factor (6),
Fp(W ) = [1 + a2

pP
2
∗ ]−1, P 2

∗ = W 2/4 −M2, in scattering
length approximation (i.e. for rp = 0). Close to thresh-
old all final state three–momenta are small and there-
fore one can approximate both the meson production pro-
cess NN → NNπ0 and elastic NN → NN scattering
by momentum independent contact vertices proportional
to A and the scattering length ap, respectively. Consider
first low energyNN–scattering in this approximation. The
bubble diagrams with 0,1,2,. . . rescatterings can be easily
summed up in the form of a geometric series,

ap − 4πa2
p

∫
d3l

(2π)3

1
P 2
∗ + i0+ − l2 + . . .

= ap + i a2
pP∗ + . . . =

ap
1− i apP∗

, (C.1)

using dimensional regularization to evaluate the (vanish-
ing) real part of the loop integral. Obviously, the sum of
these infinitely many loop diagrams is just the unitarized
scattering length approximation which leads to,

tan δ0(W ) = apP∗ . (C.2)

Next, consider in the same approximation meson produc-
tion followed by an arbitrary number of NN–rescatterings
in the final–state. Again, these loop diagrams can be
summed up to,

A
1− i apP∗

, (C.3)

and taking the absolute square,∣∣∣∣ A
1− i apP∗

∣∣∣∣2 =
|A|2

1 + a2
pP

2
∗
, (C.4)

one encounters the final–state interaction correction fac-
tor Fp(W ) = [1 + a2

p(W
2/4−M2)]−1 in scattering length

approximation. Since, the scattering length is much big-
ger than the effective range parameter for NN–scattering
(ap >> rp) one has already derived the dominant ef-
fect due to final–state interaction. Of course, in order to
be more accurate one should eventually go beyond mo-
mentum independent contact vertices. The main point we
want to make here is that the final–state interaction cor-
rection factor Fp(W ) (for rp = 0) has a sound foundation
in effective field theory.
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